On positive solutions of quasi-linear elliptic equations
نویسندگان
چکیده
منابع مشابه
On the Solutions of Quasi-linear Elliptic Partial Differential Equations*
The literature concerning these equations being very extensive, we shall not attempt to give a complete list of references. The starting point for many more modern researches has been the work of S. Bernstein,f who was the first to prove the analyticity of the solutions of the general equation with analytic and who was able to obtain a priori bounds for the second and higher derivatives of ...
متن کاملPositive Solutions of Quasi-linear Elliptic Equations with Dependence on the Gradient
In the present paper we prove a multiplicity theorem for a quasilinear elliptic problem with dependence on the gradient ensuring the existence of a positive solution and of a negative solution. In addition, we show the existence of the extremal constant-sign solutions: the smallest positive solution and the biggest negative solution. Our approach relies on extremal solutions for an auxiliary pa...
متن کاملBoundary Behavior for Solutions of Singular Quasi–linear Elliptic Equations
In this paper, for 1 γ 3 our main purpose is to consider the quasilinear elliptic equation: div(|∇u|m−2∇u) + (m− 1)u−γ = 0 on a bounded smooth domain Ω ⊂ RN , N > 1 . We get some first-order estimates of a nonnegative solution u satisfying u = 0 on ∂Ω . For γ = 1 , we find the estimate: limx→∂Ω u(x)/p(δ (x)) = 1 , where p(r) ≈ r m √ m log(1/r) near r = 0 , δ (x) denotes the distance from x to ∂...
متن کاملPositive solutions to second order semi-linear elliptic equations
Here G ⊆ R (N ≥ 2) is an unbounded domain, and L is a second-order elliptic operator. We mainly confine ourselves to the cases F (x, u) = W (x)u with real p and W (x) a real valued function on G, and F (x, u) = g(u) with g : R→ R continuous and g(0) = 0. The operator L = H − V is of Schrödinger type, namely V = V (x) is a real potential and H = −∆ or more generally H = −∇ · a · ∇ is a second or...
متن کاملPositive Solutions of Elliptic Equations withSingular
In this paper, a nonlinear elliptic boundary value problem with singular nonlinearity is studied, where L is a uniformly elliptic operator, is a bounded domain in R N , N 2, 0 may take the value 0 on @, and f(x; s) is possibly singular near s = 0. Some results regarding the existence of positive solutions for the problem are given under a set of hypotheses that make neither monotonicity nor str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hokkaido Mathematical Journal
سال: 1988
ISSN: 0385-4035
DOI: 10.14492/hokmj/1381517796